

ASSEMBLY PROBLEMS
Introduction to the Logic Countdown
game – to be developed in assembly
code for the AT Mega Micro-controller.

By Kayleigh Lamb
(13th April 2015)

Page 1 of 11

By Kayleigh Lamb – 13th April 2015

Contents
Introduction to the Logic Countdown Game ..2

Design..3

Main Flowchart ...3

Development ..4

Stage 1 ...4

Stage 2 ...5

Stage 3 ...6

Stage 4 ...7

Data used for lookup table: ..8

Stage 5 (Final Stage) ..9

Page 2 of 11

By Kayleigh Lamb – 13th April 2015

ASSEMBLY PROBLEMS

Introduction to the Logic Countdown Game
Write a program such that two 8 bit random numbers are displayed on the seven segment display, the
buzzer should sound briefly sound after each number is displayed, the numbers should then be logically
combined by randomly selecting one the of the logic functions - AND, NAND, OR, NOR or XOR and
displaying the result on the LEDs. e.g. if the two numbers were AC and B2, and the program had randomly
chosen the OR function, the LEDs would display 10111110

 Number (Hex) Number (Binary) Function

Number 1 AC 10101100
OR

Number 2 B2 10110010

Result BE 10111110

The user should then push one of the push buttons to indicate which logic function had been performed on
the two numbers. The push button mapping is:-

PB 4 PB 3 PB 2 PB 1 PB 0

AND NAND OR NOR XOR

After each correct entry the program should randomly logically combine two more random numbers and
display the result on the LEDs and decrease the amount of time the user has to select the correct logic
function. If the user is timed out before the correct function is entered, the program should alert the user of
the error by sounding the buzzer and restarting the game.

Page 3 of 11

By Kayleigh Lamb – 13th April 2015

Design

Main Flowchart
Start

Generate x2 random
numbers A & B

Display random
number A

Sound the buzzer

Display random
number B

Sound the buzzer

Randomly select
logical operator and

combine A & B

User guessed correct
logical combination?

Reduce guess timeSound the buzzer YesNo

Page 4 of 11

By Kayleigh Lamb – 13th April 2015

Development

Stage 1

I will begin the development of my program with stage 1, which will firstly involve getting the buzzer to
sound for a certain amount of time.

I was able to achieve this by plugging the buzzer into port C of the SK200 development board and writing
a piece of code that firstly sent 0 to port C, called a small delay (period) then sent 1 to port C and called
the small delay again.
I then looped round this for as long as I wanted the buzzer sound - 199.662 ms.

I had no problems writing this section of the code, but during testing I noticed that altering the length of
the small delay, determined the pitch of the buzzer.

;***************Buzzer subroutine 195.84 ms plus 2x 1.911 ms (199.662

ms)***************

.equ PORTC =$15 ;Port C Output Address (Buzzer)

.equ DDRC =$14 ;Port C Data Direction Register Address

buzzer: ldi temp2,$FF ;Initialise loop2 counter

two: ldi temp1,$FF ;Initialise loop1 counter

 ldi temp3,$FF ;Load temp3 with 1's

 out PORTC,temp3 ;Load port C with 1 on bit 3

 rcall period ;Period of sound wave

 ldi temp3,$00 ;Load temp3 with 0's

 out PORTC,temp3 ;Load port C with 0 on bit 3

 rcall period ;period of sound wave

one: dec temp1 ;Decrement loop one counter

 brne one ;If loop one counter not yet 0, go round loop1

again

 dec temp2 ;Decrement loop two counter

 brne two ;If loop two counter not yet 0, go round loop2

again

 rjmp buzzer ;Loop forever

 ;Period delay section of code (1.911 ms @ 1MHz) - utilises r25 & r24

period: ldi r24,$19 ;Initialise 2nd loop B counter

loop2: ldi r25,$19 ;Initialise 1st loop A counter

loop1: dec r25 ;Decrement the 1st loop counter

 brne loop1 ;and continue to decrement until 1st loop counter

= 0

 dec r24 ;Decrement the 2nd loop counter

 brne loop2 ;If the 2nd loop counter is not equal to zero

repeat the 1st loop, else continue

 ret

Page 5 of 11

By Kayleigh Lamb – 13th April 2015

Stage 2

For stage 2 of my program design, I will create a random number generator. It is not possible to create a
true random number generator, but I should be able to achieve a sense of randomness if I follow the
suggested algorithm in the coursework notes as follows:

“Pseudo Random Number Algorithm
If you start with a pre-seeded number, something other than zero, you can use the XOR and shift method
to create a random-number generator. When done correctly, you will have a sequence that doesn't repeat
for (2n - 1) times, where n is the number of bits you are shifting.
It works like this. Start with a number, for example the hex number 0x66. or 01100110. Take the bottom
two bits and XOR them together, then take that result and shift it onto the most significant bit of the
number.
bit 0 = 0
bit 1 = 1
bit 0 XOR bit 1 = 1
result = 10110011 or 0xB3
If you continue this method, you achieve a sense of randomness. First number and successive numbers: -
66, B3, 59, AC, 56, AB, 55, etc.”

I was able to implement this fairly easily and came up with the following code which produced the same
numbers as the above algorithm:

 ;random number generator

 ldi ZL,low(table*2) ;Set Z pointer to start of table

 ldi ZH,high(table*2)

 ldi temp1,$1 ;load mask to extract bit 0

 ldi temp2,$2 ;load mask to extract bit 1

 and temp1,random ;Extract bit 0

 and temp2,random ;Extract bit 1

 lsr temp2 ;shift mask2 right by 1 bit

 eor temp1,temp2 ;XOR bit 1 & 0

 ror temp1 ;Rotate right through carry flag

 ror random ;Rotate the number in the carry flag onto beg of original

number

Page 6 of 11

By Kayleigh Lamb – 13th April 2015

Stage 3

In order to send the correct hexadecimal values to port B for the 7 segment display, I will need to find a
way to convert my random number to a min of $00 and a max of $0F to use for the Z register pointer. The
Z register is two 8 bit registers paired to work as one 16 bit register.

As the maximum that a 16 bit register can hold is 256 decimal or $FF hex we can convert the random
number by decrementing it by 16 decimal or $10 hex as we know that 162 = 256. After each decrement,
we can increment the Z register by 1 and then test if the random number is now negative. If the random
number is not negative then we simply need to repeat the process until this is true.

;Take the random number and ensure it has min - max (0 - 15)

 mov copy,random ;make a copy of the random number

loop: inc temp1 ;increment temp1

 adiw ZL,1 ;increment z pointer

 subi copy,$10 ;subtract decimal 16 from copy

 brcs minus ;branch if minus

 rjmp loop ;if copy not minus repeat loop

minus: dec temp1

 sbiw ZL,1

 mov address,temp1 ;make a copy of the address location for the

lookup table

 clr temp1 ;clear temp register

Page 7 of 11

By Kayleigh Lamb – 13th April 2015

Stage 4

This will involve generating just one random 8 bit
hexadecimal number and displaying it on the 7
segment display. I will begin by storing the
hexadecimal values for each display digit in a lookup
table as follows:

table: .db
$3F,$06,$5B,$4F,$66,$6D,$7D,$07,$7F,$6F,$77,$7C,$39,
$5E,$79,$71

Page 8 of 11

By Kayleigh Lamb – 13th April 2015

Data used for lookup table:

Display

Number
Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Hexadecimal Display

0 0 0 1 1 1 1 1 1 3F

1 0 0 0 0 0 1 1 0 06

2 0 1 0 1 1 0 1 1 5B

3 0 1 0 0 1 1 1 1 4F

4 0 1 1 0 0 1 1 0 66

5 0 1 1 0 1 1 0 1 6D

6 0 1 1 1 1 1 0 1 7D

7 0 0 0 0 0 1 1 1 07

8 0 1 1 1 1 1 1 1 7F

9 0 1 1 0 1 1 1 1 6F

A 0 1 1 1 0 1 1 1 77

B 0 1 1 1 1 1 0 0 7C

C 0 0 1 1 1 0 0 1 39

D 0 1 0 1 1 1 1 0 5E

E 0 1 1 1 1 0 0 1 79

F 0 1 1 1 0 0 0 1 71

Page 9 of 11

By Kayleigh Lamb – 13th April 2015

Stage 5 (Final Stage)

For stage 5 of the program development, I need to piece together the other subroutines and write code
that will send the random lookup table hex values to port C where I will plug in the 7 segment display.
Please see the final version of my program below:

;***************Logic Count Down Game - By Kayleigh Lamb - 000773715

 ;Stack and Stack Pointer Addresses

.equ SPH =$3E ;High Byte Stack Pointer Address

.equ SPL =$3D ;Low Byte Stack Pointer Address

.equ RAMEND =$25F ;Stack Address

 ;Port Addresses

.equ PORTB =$18 ;Port B Output Address (7 segment display)

.equ DDRB =$17 ;Port B Data direction register address

.equ PORTC =$15 ;Port C Output Address (Buzzer)

.equ DDRC =$14 ;Port C Data Direction Register Address

 ;Register Definitions

.def sgmnt =r0 ;Register to store data for seven segment display

.def temp1 =r16 ;Register for temporary storage (load, use and clear)

.def temp2 =r17 ;Register for temporary storage (load, use and clear)

.def temp3 =r18

.def address =r19 ;Register for table address location

.def random =r20 ;Register to store random number data

.def copy =r21 ;Register to store copies of data

.def count =r22

.def YL =r28 ;Define low byte of Y

.def YH =r29 ;Define high byte of Y

.def ZL =r30 ;Define low byte of Z

.def ZH =r31 ;Define high byte of Z

;Program Initialisation

 ;Set stack pointer to end of memory

 ldi temp1,high(RAMEND)

 out SPH,temp1 ;Load high byte of end of memory address

 ldi temp1,low(RAMEND)

 out SPL,temp1 ;Load low byte of end of memory address

 clr temp1 ;reset the temp register

 ;Initialise ports for output

 ldi temp1,$FF

 out DDRB,temp1 ;Set port B for output

 out DDRC,temp1 ;Set port C for output

 clr temp1 ;Reset the temp register

;*************** Begin Main Program ***************

 ldi random,$66 ;Load $66 into random number register

main: rcall rand1 ;Call the random number1 subroutine

 rcall hex ;Call the hex subroutine

 rcall buzzer ;Call the buzzer subroutine

 rjmp main ;restart the program

Page 10 of 11

By Kayleigh Lamb – 13th April 2015

;*************** Random Table Address Number Generator ****************

 ;first random number

rand1: ldi ZL,low(table*2) ;Set Z pointer to start of table

 ldi ZH,high(table*2)

 ldi temp1,$1 ;load mask to extract bit 0

 ldi temp2,$2 ;load mask to extract bit 1

 and temp1,random ;Extract bit 0

 and temp2,random ;Extract bit 1

 lsr temp2 ;shift mask2 right by 1 bit

 eor temp1,temp2 ;XOR bit 1 & 0

 ror temp1 ;Rotate right through carry flag

 ror random ;Rotate the number in the carry flag onto beg of

original number

 clr temp1 ;Clear the temp storage registers

 clr temp2

 ;Take the random number and ensure it has min - max (0 - 15)

 mov copy,random ;make a copy of the random number

loop: inc temp1 ;increment temp1

 adiw ZL,1 ;increment z pointer

 subi copy,$10 ;subtract decimal 16 from copy

 brcs minus ;branch if minus

 rjmp loop ;if copy not minus repeat loop

minus: dec temp1

 sbiw ZL,1

 mov address,temp1 ;make a copy of the address location for the

lookup table

 clr temp1 ;clear temp register

 ret ;Return to next line in main program

;**************** Lookup table for 7 segment display hex values

table: .db $3F,$06,$5B,$4F,$66,$6D,$7D,$07,$7F,$6F,$77,$7C,$39,$5E,$79,$71

;**************** Send random number to 7 segement display ****************

hex: rcall delay ;Call delay subroutine

 lpm ;Load sgmnt with data pointed to by Z

 out PORTB,sgmnt ;and display data on port B

 rcall delay

 ret

 ;Delay Subroutine (25.349 ms @ 1MHz)

delay: ldi YH,high($ffff) ;Load high byte of Y

 ldi YL,low($ffff) ;Load low byte of Y

loops: sbiw Y,1 ;Decrement Y

 brne loops ;and continue to decrement until Y=0

 ret ;Return to next line 7 segment display routine

;***************Buzzer subroutine 195.84 ms plus 2x 1.911 ms (199.662

ms)***************

buzzer: ldi temp2,$FF ;Initialise loop2 counter

two: ldi temp1,$FF ;Initialise loop1 counter

 ldi temp3,$FF ;Load temp3 with 1's

 out PORTC,temp3 ;Load port C with 1 on bit 3

 rcall period ;Period of sound wave

Page 11 of 11

By Kayleigh Lamb – 13th April 2015

 ldi temp3,$00 ;Load temp3 with 0's

 out PORTC,temp3 ;Load port C with 0 on bit 3

 rcall period ;period of sound wave

one: dec temp1 ;Decrement loop one counter

 brne one ;If loop one counter not yet 0, go round loop1

again

 dec temp2 ;Decrement loop two counter

 brne two ;If loop two counter not yet 0, go round loop2

again

 ret ;Return to main program

 ;Period delay section of code (1.911 ms @ 1MHz) - utilises r25 & r24

period: ldi r24,$19 ;Initialise 2nd loop B counter

loop2: ldi r25,$19 ;Initialise 1st loop A counter

loop1: dec r25 ;Decrement the 1st loop counter

 brne loop1 ;and continue to decrement until 1st loop counter

= 0

 dec r24 ;Decrement the 2nd loop counter

 brne loop2 ;If the 2nd loop counter is not equal to zero

repeat the 1st loop, else continue

 ret

